II B. Tech II Semester, Supplementary Examinations, Dec - 2012 SWITCHING THEORY LOGIC DESIGN

(Com. to EEE, ECE, ECC, BME, EIE)
Time: 3 hours

1. a) Convert the following numbers
i) $(2568)_{10}$ to base 6
ii) (A87) ${ }_{12}$ to base 10
b) If $A=-37$ and $B=+19$ Represent A and B in 8 -bit 2 's complemen
ii) Find A+B ii) Find A-B
($8 \mathrm{M}+7 \mathrm{M}$)
2. a) Consider the message bits $m_{4} m_{3} m_{2} m_{1}=1101$. Encode it into Hamming code to detect single error.
b) Obtain the compliment and dual for the following expressions
i) $\mathrm{AB}+\mathrm{BC}+\mathrm{AC}$
ii) $\mathrm{A}+\mathrm{B}^{\prime} \mathrm{C}\left(\mathrm{A}+\mathrm{B}+\mathrm{C}^{\prime}\right)$ iii) $\mathrm{AB}+(\mathrm{AC})^{\prime}+(\mathrm{AB}+\mathrm{C})$
($6 \mathrm{M}+9 \mathrm{M}$)
3. Simplify the following Boolean function F; then express the simplified Boolean function in sum of minterms.
i) $F(x, y, z)=\sum(1,3,5,6,11,13)$ ii) $F(x, y, z)=\sum(0,1,2,8,10,14,15)$
(7M+8M)
4. a) Design a Full addercrircuit with AND, OR, NOT gates.
b) Explain Excess-3adder circuit with an example.
(5M+10M)
5. a) Design a BCD to decimal decoder.
b) Design $8 \mathrm{X1}$ muttiplexer using 2 X 1 multiplexers
c) Differentiate between encoder and priority encoder.
$(4 \mathrm{M}+7 \mathrm{M}+4 \mathrm{M})$
6. A) Design a BCD to excess-3 code converter using

RQM
ii)PAL
b) Write short notes on Multi-gate synthesis.
($8 \mathrm{M}+7 \mathrm{M}$)
7. a) Design a Mod-6 synchronous counter using JK flip flops.
b) Draw and explain the working of Master-Slave JK flip flop.
(7M+8M)
8. a) What are the capabilities and limitations of Final State Machines?
b) A clocked sequential circuit is provided with a single input X and single output Y . whenever the input produce string of pulses 111 or 000 and at end of the sequence it produces an output $\mathrm{Y}=1$ and overlapping is also allowed. Find equivalence classes using partition method and design the circuit using D flip flops
($4 \mathrm{M}+11 \mathrm{M}$)

1 of 1

II B. Tech II Semester, Supplementary Examinations, Dec - 2012 SWITCHING THEORY LOGIC DESIGN

(Com. to EEE, ECE, ECC, BME, EIE)
Time: 3 hours

1. a) Represent the unsigned decimal numbers 975 and 357 in BCD, and then show the necessary steps to find their sum.
b) What is a self complementary code? Explain with two examples. $\quad(8 \mathrm{M}+7 \mathrm{M})$
2. a) Design a logic circuit having three inputs $\mathrm{A}, \mathrm{B}, \mathrm{C}$ sueh that output is 1 when $\mathrm{A}=0$ or whenever $\mathrm{B}=\mathrm{C}=1$. Also obtain logic circuit using NAND gates.
b) Given $\mathrm{AB}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}=\mathrm{C}$ show that $\mathrm{AC}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}=\mathrm{B}$.
($8 \mathrm{M}+7 \mathrm{M}$)
3. Minimize the following function using tabular minimization and verify the same with K-map minimization $\mathrm{F}=\sum(2,4,9,10,11,12,19,20,2 \mathrm{~A}, 22,23,24,25,26,29,31)$
4. a) Generate 2 's compliment for the given 4 bit number using Full adders.
b) Write short notes on BCD adder circuit
($8 \mathrm{M}+7 \mathrm{M}$)
5. a) Construct a 4 to 16 line decoder with five 2 to 4 line decoders with enable.
b) Show how BCD ripple counter can be implemented.
(7M+8M)
6. a) Give the comparison between PROM, PLA and PAL.
b) Determine whether the X -OR function is a threshold function. Justify.
c) Write short notes on PLA.
7. a) Distinguish between combinational and sequential logic circuits.
b) Convert a D flip flop into

SR flip flop
ii) JK flip flop iii) T flip flop.
($6 \mathrm{M}+9 \mathrm{M}$)
a) Explain in detail the Mealy state diagram and ASM chart for it with an example.
b) Show that 8 exit paths in an ASM block emanating from the decision boxes that check the eight possible binary values of three control variables.
(7M+8M)

II B. Tech II Semester, Supplementary Examinations, Dec - 2012 SWITCHING THEORY LOGIC DESIGN

(Com. to EEE, ECE, ECC, BME, EIE)
Time: 3 hours

Answer any FIVE Questions

All Questions carry Equal Marks

1. a) Explain different methods used to represent negative numbers in binary system.
b) In a new number system X and Y are successive digits such that $(X Y)_{r}=(25)_{10}$ and $(\mathrm{YX})_{\mathrm{r}}=(31)_{10}$. Find $\mathrm{X}, \mathrm{Y}, \mathrm{r}$
2. a) Explain the fundamental postulates of Boolean algebra
b) Implement the Boolean function $F=A B^{\prime} C D^{\prime}+A^{\prime} B C D+A B^{\prime} C^{\prime} D+A B C^{\prime} D$ with exclusive OR and AND gates.
($6 \mathrm{M}+9 \mathrm{M}$)
3. Minimize the following function using tabular minfimization and verify the same with K-map minimization $\mathrm{F}=\sum(0,2,4,5,6,7,8,10,14,17,18,21,29,31)+\sum \mathrm{d}(11,20,22)$
(15M)
4. a) Implement a Full subtractor with two half subtractors and an OR gate.
b) Write short notes on look-ahead adder circuit.
($8 \mathrm{M}+7 \mathrm{M}$)
5. a) Design an excess-2 to BCD code converter using a 4-bit full adders MSI circuit.
b) Design 64 line output de-multiplexer using 4 to 16 and 2 to 4 de-multiplexers
(7M+8M)
6. a) Implement the following Boolean functions with a PLA
i) $F(x, y, z)=\sum(0,1$
ii) $F(x, y, z)=\sum(0,5,6,7)$
b) Implement Full adder circuit using ROM
(10M+5M)
7. a) Define a sequential system and explain how it differs from a combinational system..
b) Draw the circuit of 4 bit Johnson counter using D flip flops and explain its operation with the help of bit pattern.
($6 \mathrm{M}+9 \mathrm{M}$)
8. a) What are the capabilities and limitations of finite state.
b) For the state table of the machine given below, find the equivalent partition and a corresponding reduced machine in standard form.
(7M+8M)

PS	NS, Z	
$\mathrm{X}=0$		$\mathrm{X}=1$
A	$\mathrm{~B}, 1$	$\mathrm{H}, 1$
B	$\mathrm{~F}, 1$	$\mathrm{D}, 1$
C	$\mathrm{D}, 0$	$\mathrm{E}, 1$
D	$\mathrm{C}, 1$	$\mathrm{~F}, 1$
E	$\mathrm{D}, 1$	$\mathrm{C}, 1$
F	$\mathrm{C}, 1$	$\mathrm{C}, 1$
G	$\mathrm{C}, 1$	$\mathrm{D}, 1$
H	$\mathrm{C}, 0$	$\mathrm{~A}, 1$

II B. Tech II Semester, Supplementary Examinations, Dec - 2012 SWITCHING THEORY LOGIC DESIGN

(Com. to EEE, ECE, ECC, BME, EIE)
Time: 3 hours

1. a) Convert the decimal number 508.75 to base 7,8 and 12
b) Represent the decimal number 7258 in
i) BCD code ii) excess- 3 code iii) 2421 code
iv) 6311 code
(7M+8M)
2. a) Explain error correction and error detection codes with examples. b) Implement the following Boolean function F using the two-level form
i) NAND-AND
ii) AND-NOR where $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(0,1,2,3,4,8,9,12)$
(7M+8M)
3. Simplify the following using K-map method and tabutation method F (A,B,C,D,E) $=\sum(0,2,4,9,13,21,23,25,29,31)$
4. a) Design a Full adder using half adders and carry look ahead adders.
b) Mention the applications of Full adders.
5. a) Design 3 to 8 line decoder circuit using NOR gates only.
b) What is meant by hazard in combinational circuit
($12 \mathrm{M}+3 \mathrm{M}$)
6. A combinational cireut is defined by the functions:
$\mathrm{F}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum \mathrm{m}(3,5,6,7)$
$F_{2}(A, B, C)=\sum m(0,2,4,7)$. Implement the circuit with a PLA having three inputs, four product terms and two outputs.
7. a) Design a modulo-12 up synchronous counter using T- flip flops and draw the circuit diagram.
Explain synchronous and ripple counters. Compare their merits and demerits.
(9M+6M)
8. a) The output Z of a fundamental mode, two input sequential circuit is to change from 0 to 1 only when x_{2} changes from 0 to 1 while $x_{1}=1$. The output changes from 1 to 0 only when x_{1} changes from 1 to 0 while $x_{2}=1$. Find a minimum row reduced table.
b) Draw the state diagrams of a sequence detector which can detect 011 .
