Co	de No: R22023	R10	SET - 1
		Semester, Supplementary Examinations, WITCHING THEORY LOGIC DESIGN	Dec – 2012
		(Com. to EEE, ECE, ECC, BME, EIE)	
Tir	me: 3 hours		Max. Marks: 75
		Answer any FIVE Questions	
		All Questions carry Equal Marks	
1.	a) Convert the following r	numbers	
		ii) (A87) ₁₂ to base 10	
	b) If $A = -37$ and $B = +19$	P Represent A and B in 8-bit 2's compleme	ent.
	ii) Find A+B ii) F	ind A-B	(8M+7M)
2.		bits $m_4 m_3 m_2 m_1 = 1101$. Encode it int	o Hamming code to detect
	single error.		
		and dual for the following expressions $(A + B^2C(A + B + C^2)) = (A + B^2C(A + B + C^2))$	((M, 0M))
	I) AD + DC + AC	ii) A+B'C(A+B+C') iii) AB+(AC)'+(AB	+C) (6M+9M)
3.	Simplify the following B	Boolean function F; then express the simple	olified Boolean function in
0.	sum of minterms.	sooren ingenen i, men enpress an samp	
	i) $F(x,y,z)=\sum(1,3,5,6,1)$	1,13) ii) $F(x,y,z)=\sum(0,1,2,8,10,14,15)$	(7M+8M)
		\sim	
4.		cuit with AND, OR, NOT gates.	
	b) Explain Excess-3 adder	r circuit with an example.	(5M+10M)
-			
5.	a) Design a BCD to decinb) Design 8X1 multiplexe		
		encoder and priority encoder.	(4M+7M+4M)
	c) Differentiate between e	neoder and priority cheoder.	
6.	(a) Design a BCD to exces	s-3 code converter using	
	i) ROM ii)PAL	C	
~	b) Write short notes on M	ulti-gate synthesis.	(8M+7M)
7.		ronous counter using JK flip flops.	
,	b) Draw and explain the v	vorking of Master-Slave JK flip flop.	(7M+8M)
8.	a) What are the canabilitie	es and limitations of Final State Machines?	
5.			

b) A clocked sequential circuit is provided with a single input X and single output Y. whenever the input produce string of pulses $1 \ 1 \ 1$ or $0 \ 0 \ 0$ and at end of the sequence it produces an output Y = 1 and overlapping is also allowed. Find equivalence classes using partition method and design the circuit using D flip flops (4M+11M)

Code No: R22023	R10	(SET - 2)
II B. Tec	h II Semester, Supplementary Examinations SWITCHING THEORY LOGIC DESIGN	
	(Com. to EEE, ECE, ECC, BME, EIE)	
Time: 3 hours		Max. Marks: 75
	Answer any FIVE Questions	
	All Questions carry Equal Marks	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
1. a) Represent the uns steps to find their	signed decimal numbers 975 and 357 in BCD, a sum.	and then show the necessary
b) What is a self con	nplementary code? Explain with two examples.	(8M+7M)
2. a) Design a logic c	circuit having three inputs A, B, C such that	output is 1 when $A = 0$ or
	= 1. Also obtain logic circuit using NAND gate	
b) Given AB'+ A'B	=C show that AC'+A'C=B.	(8M+7M)
3. Minimize the follow	ving function using tabular minimization and v	verify the same with K-map
	2,4,9,10,11,12,19,20,21,22,23,24,25,26,29,31)	(15M)
4. a) Generate 2's com	pliment for the given 4 bit number using Full ac	dders.
b) Write short notes	on BCD adder circuit	(8M+7M)
	6 line decoder with five 2 to 4 line decoders with	
b) Show how BCD	ripple counter can be implemented.	(7M+8M)
6. a) Give the compari	son between PROM, PLA and PAL.	
b) Determine wheth	er the X-OR function is a threshold function. Ju	ıstify.
c) Write short notes	on PLA.	(6M+5M+4M)
7. a) Distinguish between	een combinational and sequential logic circuits.	
b) Convert a D flip	flop into	
i) SR flip flop ii	) JK flip flop iii) T flip flop.	(6M+9M)
8. a) Explain in detail	the Mealy state diagram and ASM chart for it w	vith an example.
b) Show that 8 exit	paths in an ASM block emanating from the deci	ision boxes that check the
eight possible bir	nary values of three control variables.	(7M+8M)

1 of 1

ALL JNTU WORLD

Co	de No: R22023	<b>(R10)</b>	(SET - 3)
		I Semester, Supplementary Examinations, Dec – SWITCHING THEORY LOGIC DESIGN (Com. to EEE, ECE, ECC, BME, EIE)	2012
Tir	ne: 3 hours	(Com. to EEE, ECE, ECC, BME, EIE)	Max. Marks: 75
		Answer any <b>FIVE</b> Questions	
		All Questions carry <b>Equal</b> Marks	$\frown$
1.		thods used to represent negative numbers in binary tem X and Y are successive digits such that (XY)	
2.	· •		C'D + A BC'D with (6M+9M)
3.		g function using tabular minimization and verify the 4,5,6,7,8,10,14,17,18,21,29,31) + $\sum d(11,20,22)$	he same with K-map (15M)
4.		ptractor with two half subtractors and an OR gate. look-ahead adder circuit.	(8M+7M)
5.		b BCD code converter using a 4-bit full adders MSI t de-multiplexer using 4 to 16 and 2 to 4 de-multipl	
6.	a) Implement the follow i) F (x,y,z) = $\sum (0,1,2)$ b) Implement Full adder		(10M+5M)
7.		ystem and explain how it differs from a combination 4 bit Johnson counter using D flip flops and expla- n.	

- 8. a) What are the capabilities and limitations of finite state.b) For the state table of the machine given below, find the equivalent partition and a corresponding reduced machine in standard form. (7M+8M)

PS	NS,Z	
	X=0	X=1
A	B,1	H,1
В	F,1	D,1
C	D,0	E,1
D	C,1	F,1
E	D,1	C,1
F	C,1	C,1
G	C,1	D,1
H	C,0	A,1

1 of 1

|"|"|||"|"|"|

ALL JNTU WORLD

Code No: R220	N23 (R10) (SI	ET - 4
]	II B. Tech II Semester, Supplementary Examinations, Dec – 2012	
	SWITCHING THEORY LOGIC DESIGN	
Times 2 haves	(Com. to EEE, ECE, ECC, BME, EIE)	Louise 75
Time: 3 hours		Marks: 75
	Answer any <b>FIVE</b> Questions	
	All Questions carry <b>Equal</b> Marks	
1. a) Convert	the decimal number 508.75 to base 7, 8 and 12	
-	nt the decimal number 7258 in code ii) excess-3 code iii)2421 code iv) 6311 code	(7M+8M)
-	error correction and error detection codes with examples.	
i) NANI	ent the following Boolean function F using the two-level form D-AND ii) AND-NOR where $F(A,B,C,D) = \sum_{i=1}^{n} (0,1,2,3,4,8,9,12)$ (	(7M+8M)
	the following using K-map method and tabulation method $D(E) = \sum (0,2,4,9,13,21,23,25,29,31)$	(15M)
	a Full adder using half adders and carry look ahead adders.	(10111)
		1M+4M)
5. a) Design 3	3 to 8 line decoder circuit using NOR gates only.	
b) What is	meant by hazard in combinational circuit (1	2M+3M)
•	tional circuit is defined by the functions: = $\sum m(3,5,6,7)$	
F ₂ (A,B,C)	= $\sum m(0,2,4,7)$ . Implement the circuit with a PLA having three inputs, for two outputs.	ar product (15M)
7. a) Design diagram	a modulo-12 up synchronous counter using T- flip flops and draw t	he circuit
		(9M+6M)
only wh	put Z of a fundamental mode, two input sequential circuit is to change from $x_2$ changes from 0 to 1 while $x_1 = 1$ . The output changes from 1 to 0 only	
changes	from 1 to 0 while $x_2 = 1$ . Find a minimum row reduced table.	
1		

b) Draw the state diagrams of a sequence detector which can detect 011. (8M+7M)

## 1 of 1

|"|"|||"|"|"|

## ALL JNTU WORLD