Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

plot the various response curves.

Code No: L0405

IV B.Tech. II Semester Regular Examinations, April 2010 DSP PROCESSORS AND ARCHITECTURES (Common to Electronics & Communications Engineering, Electronics& Instrumentations Engineering, Bio-Medical Engineering)

me: 3 Hours		Max N	Max Marks: 80	
	All Questions ca	Five Questions nrry equal marks ****		
1.	a) With the aid of suitable block diag	ram explain the overview of a dig	ital signal	
	processing system.		[8]	
	b) What are the various types of discu	rete time sequences in DSP for an	alysis purpose	
	and give their definitions and MA	TLAB representations.	[8]	
2.	a) Describe the sources of error for evaluating the computational accuracy in DSP			
	implementations.		[8]	
	b) Write notes on Compensating Filte	er with suitable analysis	[8]	
3.	a) With suitable architecture explain programmable DSP devices.	the various data addressing capab	ilities for	
	b) Explain the features for external in devices.	terfacing in connection with prog	rammable DSP	
4.	a) Explain the role of interrupts durin	g execution process in DSP proce	essors. [8]	
	b) Explain the concept of pipelining and its performance used in DSP processors with			
	suitable example.		[8]	
5.	a) With relevant examples explain th	e data addressing modes of TMS3	20C54XX	
	processors.	-	[8]	
	b) Explain the pipeline operation of T	MS320C54XX processors with s	uitable	
	example		[8]	
6.	Implement a digital FIR low pass filt	er with the following specification	18.	
	$\omega_{\rm p} = 0.2\pi$	$R_p = 0.25 \text{ dB}$		
	$\omega_{\rm s} = 0.3\pi$	$A_s = 50 \text{ dB}$		
	Using the Parks-McClellan algorithm	n. Give the necessary MATLAB s	ource code and	

1of 2

Time: 3 Hours

[16]

•

Set No. 1

7. a) What are the various types of FET algorithms for the efficient compu		on of the
	DFT?	[8]
	b) Write notes on Butterfly Computation relevant to FET algorithms.	[8]
8.	a) With suitable diagram explain the concept of memory interfacing to	
	programmable DSP devices	[8]
	b) Write notes on Direct Memory Access.	[8]

IV B.Tech. II Semester Regular Examinations, April 2010 DSP PROCESSORS AND ARCHITECTURES

(Common to Electronics & Communications Engineering, Electronics& **Instrumentations Engineering, Bio-Medical Engineering**)

Time: 3 Hours

Max Marks: 80

Set No. 2

Answer any Five Questions All Questions carry equal marks ******

- 1. a) Define the term 'Discrete Fourier Transform' and explain its properties. [8] b) Consider the analog signal $x_a(t) = 3 \cos 2000 \pi t + 5 \sin 6000 \pi t + 10 \cos 12,000$ [8] πt.
 - (i) What is the Nyquist rate for this signal?

(ii) Assume now that we sample this signal using a sampling rate $F_s = 5000$ samples/sec. What is the discrete-time signal obtained after sampling?

- 2. a) With suitable significance explain the number formats for signals and coefficients in DSP systems. [8]
 - b) Draw the circuit diagram of Compensating Filter and perform the analysis [8]
- 3. a) Explain the basic architectural features considered for programmable DSP devices. b) With suitable example explain the data addressing capabilities for programmable DSP devices. [8+8]
- 4. a) What is meant by 'Hardware Looping'? Explain the importance of stacks during execution process in DSP processors. [8]
 - b) Explain the various interrupt effects plays a role during the execution and pipelining process in DSP processors. [8]
- 5. a) With relevant examples explain the memory space of TMS320C54XX processors b) Explain the role of on-chip peripherals for programmable digital signal processors [8+8].

10f 2

6. Implement a basic DSP algorithm for digital IIR low pass filter with the following specifications.

$\omega_{\rm p} = 0.2\pi$	$R_p = 1 dB$
$\omega_{\rm s} = 0.3\pi$	$A_s = 15 \text{ dB}$

Using a Chebyshev-II prototype. Give the necessary MATLAB source code and plot the relevant response curves. [16]

- 7. a) Give an FET algorithm for efficient DFT computation with suitable example. [8]b) Write notes on Computation of the signal spectrum relevant to FET algorithms [8]
- 8. a) Explain the memory space organization of programmable DSP devices with simple example.
 - b) Write notes on CODEC interface circuit. [8+8]

IV B.Tech. II Semester Regular Examinations, April 2010 DSP PROCESSORS AND ARCHITECTURES (Common to Electronics & Communications Engineering, Electronics& Instrumentations Engineering, Bio-Medical Engineering)

Time: 3 Hours

Answer any Five Questions All Questions carry equal marks ******

1. a) Explain the basic elements of a Digital Signal Processing system with its block		ck
	diagram.	[8]
	b) Explain the frequency domain representation of linear time-invariant systems	5. [8]
2.	a) Describe the DSP Computational errors for evaluating the computational accu	uracy in
	DSP implementations	[8]
	b) Differentiate A/D Conversion errors and D/A Conversion errors relevant to	
	computational accuracy in DSP applications.	[8]
3.	a) Explain the various DSP Computational building blocks with the aid of its ba	sic
	architecture considered for programmable DSP devices.	[8]
	b) Explain the address generation unit with suitable example for programmable	DSP
	devices.	[8]
4.	a) Explain the interlocking mechanism taken over during the process of pipelini	ng in
	DSP processors.	[8]
	b) Explain the various branching effects plays a role during the execution and p	ipelining
	process in DSP processors	[8]
5.	a) Explain the programming concept of TMS320C54XX processors with releva	nt
	example.	[8+8]

b) Explain the pipeline operation of TMS320C54XX processors with suitable example

Set No. 3

Max Marks: 80

- 6. a) What is meant by 'Q-notation'? Differentiate FIR and IIR filters with respect to various performance parameters. [8+8]
 b) Implement direct form of adaptive FIR filter using least-mean-square algorithm.
- 7. a) Implement an 8-point FFT on the TMS320C54XX processor with the necessary FFT algorithm. [8+8]
 b) Write notes on overflow and scaling relevant to implementation of FET algorithms.
- 8. a) Explain how to interface the parallel I/O peripherals to programmable DSP devices with suitable example. [8]
 - b) Write notes on multichannel buffered serial port. [8]

2of 2

IV B.Tech. II Semester Regular Examinations, April 2010 DSP PROCESSORS AND ARCHITECTURES (Common to Electronics & Communications Engineering, Electronics& Instrumentations Engineering, Bio-Medical Engineering)

Time:	3 Hours Max Marks:	80
	Answer any Five Questions All Questions carry equal marks ******	
1.	a) Explain how are signals processed? Briefly explain the advantages and various	5
	categories of Digital Signal Processing.	[8]
	b) Explain the DSP using MATLAB with proper example	[8]
2.	a) Define and explain the terms 'Dynamic Range and Precision 'relevant to	
	computational accuracy in DSP implementations.	[8]
	b) Write notes on Compensating filter.	[8]
3.	a) Explain the bus architecture and memory organization for programmable DSP with relevant example.	devices [8]
	b) Explain the speed issues and features for external interfacing for programmabl	
	devices.	[8]
4.	a) Explain the relative branch support during the process of execution in DSP pro- with suitable example.	cessors [8]
	b) Explain the various pipeline programming models that are adapted during the pipelining process in DSP processors.	[8]
5.	a) Explain the instructions of TMS320C54XX processors with relevant examplesb) Explain the interrupts of TMS320C54XX processors with suitable example.	. [8] [8]
6.	a) Implement the interpolation filters using necessary basic DSP algorithmsb) Implement the PID Controller using the necessary DSP algorithm	[8] [8]

Set No. 4

7.	a) Explain the bit-reversed index generation with respect to FFT algorithms	[8]
	b) Write notes on Butterfly computation relevant to implementation of FET al	lgorithms
		[8]
8.	a) Explain a CODEC interface circuit with its necessary programming by con-	sider an
	example.	[8]
	b) Write notes on I/O peripherals to programmable DSP devices	[8]

2of 2