IV B.Tech II Semester Regular Examinations, Apr/May 2007 EMBEDDED SYSTEMS (Common to Electrical & Electronic Engineering and Electronics & Communication Engineering)

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- What is NRE cost? For a particular product determine the NRE cost and unit cost to be for the following three listed IC technologies: FDGA: (\$10,000,\$50) ASIC: (\$50,000,\$10) VLSI: (\$200,000,\$5).
- 2. Design a 2-bit comparator with a single output, using the combination logic design architecture. [16]
- 3. Describe why a general-purpose processor would cost less than a single-purpose processor you design yourself. [16]
- 4. State the need for more functional units in digital signal processor. [16]
- 5. Explain in detail about Hierarchical/Concurrent state machine models. [16]
- 6. Explain the concept of synchronization among concurrent processes by condition variables with an example. [8+8]
- Design a circuit for the expression F=abc'd'+a'cd+ab'cd with minimum gates using two level logic minimization. [16]
- 8. Explain in detail about intellectual property cores. [16]

IV B.Tech II Semester Regular Examinations, Apr/May 2007 EMBEDDED SYSTEMS (Common to Electrical & Electronic Engineering and Electronics & Communication Engineering)

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. List a pair of design metrics that may compete with one another, providing an intuitive explanation of the reason behind the competition. [16]
- 2. (a) What is a single-purpose processor? What are the benefits of choosing a single-purpose processor to against a general-purpose processor?
 - (b) Draw the basic architecture of single-purpose processor. [8+8]
- 3. (a) Explain the factors effecting selection of a microprocessor.
 - (b) Compare the general purpose processor, microcontroller and Digital signal processor. [8+8]
- 4. Explain the need of special architecture for pipelining and parallelism. [16]
- 5. (a) What are the models commonly used for describing embedded systems?
 - (b) State differences between a computation model and a language, and also between a textual language and a graphical language. [8+8]
- 6. (a) Describe the concurrent process model with an example.
 - (b) Distinguish between computational models, languages and implementations.

[8+8]

- 7. Describe each tool that has enabled the elevation of software design and hardware design to higher abstraction levels. [16]
- 8. (a) What is hardware /software co-design?
 - (b) Explain temporal and spatial thinking in hardware/software co-design? [8+8]

IV B.Tech II Semester Regular Examinations, Apr/May 2007 EMBEDDED SYSTEMS (Common to Electrical & Electronic Engineering and Electronics & Communication Engineering)

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) What is an embedded system? Why is it so hard to define?
 - (b) List the applications of embedded systems. [8+8]
- Design a 3-bit counter that counts the following sequence: 1,2,4,5,7,1,2,?.. start from a state diagram, draw the state table, minimize the logic, and draw the final circuit.
- 3. (a) Explain the general purpose processor design.
 - (b) Draw and explain architecture of a simple microprocessor. [8+8]
- 4. Explain different data addressing modes of digital signal processor. [16]
- 5. Explain in detail about Hierarchical/Concurrent state machine models. [16]
- 6. (a) Describe the concurrent process model with heart beat monitoring embedded system.
 - (b) Illustrate the Set top box embedded system. [8+8]
- 7. Describe each tool that has enabled the elevation of software design and hardware design to higher abstraction levels. [16]
- 8. (a) Explain the three types of cores such as hard, soft and firm cores.
 - (b) Show the correspondence of the three types of cores with Gazki's Y-chart.

[8+8]

IV B.Tech II Semester Regular Examinations, Apr/May 2007 EMBEDDED SYSTEMS (Common to Electrical & Electronic Engineering and Electronics & Communication Engineering) Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- ****
- 1. List and define the three main processor technologies. What are the benefits of using each of the three different processor technologies? [16]
- Design a 3-bit counter that counts the following sequence: 1,2,4,5,7,1,2,... start from a state diagram, draw the state table, minimize the logic, and draw the final circuit.
- 3. Explain the following in embedded systems view:
 - (a) Program and Data memory space.
 - (b) Registers.
 - (c) I/O.
 - (d) Interrupts. [4+4+4+4]
- 4. Explain the need of special architecture for pipelining and parallelism. [16]
- 5. Explain the state chart language with elevator controller example. [16]
- 6. (a) Explain different processes scheduler in a single general purpose processor.
 - (b) Explain different types of scheduling algorithms in a single processor environment. [8+8]
- 7. List and describe three general approaches to improving designer productivity.[16]
- 8. Explain in detail about intellectual property cores. [16]
